Tuesday, April 28, 2009

Biogeochemistry: Less nickel for more oxygen

News and Views
Nature 458, 714-715 (9 April 2009) | doi:10.1038/458714a; Published online 8 April 2009


Biogeochemistry: Less nickel for more oxygen
Mak A. Saito1

Top of pageAbstractThe availability (or lack) of oceanic trace elements is providing fresh lines of explanation for turning points in Earth's history — the Great Oxidation Event being one such momentous occasion.

About 2.4 billion years ago, the oxygen content of Earth's atmosphere increased in what is called the Great Oxidation Event (GOE). This marked the beginning of the most significant series of chemical changes Earth has ever experienced, setting the stage for oxidative weathering of the continents, successive changes in ocean chemistry, and the eventual rise of multicellular life.

Yet the sequence of events leading up to the GOE is not well understood. Most researchers agree that the evolution of oxygenic photosynthesis within a group called the cyanobacteria was the source of the molecular oxygen that caused the GOE1. But the timing of the rise of these bacteria is uncertain2, 3, and there may have been a period of inertia — due, for example, to chemical reactions with methane that consumed oxygen4 — that prevented a swift increase in atmospheric oxygen. It remains a matter of debate how these two phenomena might have induced the GOE: an early rise of cyanobacteria and slow crumbling of chemical resistance3, 4; or a late rise of cyanobacteria leading to rapid initiation of the GOE5.

On page 750 of this issue6, Konhauser et al. report evidence for an alternative driving mechanism of the GOE, one that would have decreased microbial methane production in the oceans and paved the way for increased oxygen abundances. The authors find significant decreases in the nickel-to-iron ratios in ancient rocks, known as banded iron formations, that provide records of element concentrations in the oceans (Fig. 1). They estimate that a major decrease in the oceanic inventory of nickel must have occurred around 2.7 billion years ago. This, they conclude, led to a cascade of events in which methanogens, with their gluttonous appetite for nickel to feed three nickel-containing metalloenzymes, would have become starved of the element and so have produced much less methane. With the decrease in chemical inertia associated with methane4, the stage was set for cyanobacterial oxygen to accumulate, leading to the GOE. Moreover, although Konhauser et al. don't go into detail, the decline in atmospheric methane, a powerful greenhouse gas, is believed to help account for the initiation of a planetary-scale glaciation known as Snowball Earth that is thought to have begun between 2.3 billion and 2.2 billion years ago4, 5.

Figure 1: Record site.
This is a view of Dales Gorge, northwest Australia, one of the banded iron formations sampled by Konhauser et al.6.

High resolution image and legend (151K)



The idea that significant changes in seawater trace-metal abundance have occurred during Earth's history is becoming popular7, 8. For example, it is thought that iron and cobalt were abundant in ancient oceans, whereas zinc and copper were probably extremely scarce owing to precipitation with sulphides8. When the oceans became oxygenated, it is likely that this scheme was reversed, with iron and cobalt becoming scarce through oxidation and precipitation as oxyhydroxides, and zinc and copper becoming much more abundant upon the oxidation of sulphide to sulphate in sea water. These predictions of broad changes in ocean chemistry are mirrored by the physiological and genomic traits of archaea and bacteria, relative to those of the later-evolving eukaryotes8, 9.

Nickel has largely been left out of this intriguing story. On the evidence of chemical modelling8, it seems that nickel was not as strongly affected by the variations in sulphide and oxygen during Earth's history. But such a conclusion does not take into account the possible involvement of external factors. Konhauser et al. show how such a factor might have come into play, with the cooling of Earth's mantle resulting in decreased eruption of nickel-rich rocks and causing an estimated 50% fall in the oceanic nickel inventory.

Konhauser and colleagues' thinking6 may come as a surprise to those familiar with the chemistry of the modern oceans. Trace metals — as their name suggests — are extraordinarily scarce in sea water. In vast regions of the modern oceans, photosynthesis is limited by low iron availability, with iron concentrations often being less than 0.05 nanomoles per litre10. Yet, of the trace metals required by life, nickel is one of the more abundant in sea water, with surface water concentrations of 1–2 nanomoles per litre11. In this modern context, the idea of a nickel famine seems odd. But the nickel requirements of methanogens are reported6 to be in the hundreds of nanomoles per litre, suggesting that methanogens cannot live in the modern oceans and are perhaps relegated to sedimentary, coastal and freshwater environments, where nickel is more abundant.

By connecting changes in mantle temperature to nickel fluxes and methanogens, Konhauser and colleagues' study is particularly satisfying. Instead of relying on the uncertain timing of the rise of cyanobacteria to explain the GOE, that event can instead be tied to a specific mechanism recorded in the banded iron formations. In addition, this 'nickel famine' mechanism is consistent with evidence12 of 'whiffs of oxygen' that occurred more than 50 million years before the GOE. But I cannot help but wonder whether there is a reason — such as the slow chemical kinetics of nickel ions — why methanogens could not evolve a high-affinity nickel-uptake mechanism similar to those that exist for the uptake of iron, zinc and cobalt13, 14, 15.

Finally, there is another context in which the research of Konhauser et al. is set — the exciting endeavour of trying to understand how the elemental cycles (of nickel, carbon, iron, nitrogen and so on) have 'co-evolved' with microbial life. Many of the changes in element cycling were probably caused by the rise and fall of specific microbial metabolisms, while also strongly affecting the trajectory and composition of life on Earth. Life and the cycling of elements have both been changing throughout Earth's history, often influencing each other profoundly along the way. One of the sobering realizations of studies such as this is that, although natural selection provides a clear, single positive-feedback mechanism for the continuation of life, elemental cycles are instead influenced by an aggregate of mechanisms, including biological evolution, chemical reactions, changes in ocean circulation and geological events. If, as Konhauser et al. suggest, a single geological change can starve a major oceanic microbial community, and thereby change the trajectory of life on Earth, it suggests that there is a fragility to Earth's elemental cycles that we are only beginning to uncover.

No comments: